UV T L AULVITAUVIT |

Getting

eeeeeeeeeee

aaaaaaaaaaaaa

and Maartje Kasdorp

Automated

Testing
Under

Control



esting of systems is probably the most difficult task there is in IT—
especidly if you want to execute the tests automatically. We make our
living running test projects for customers, and have experienced many of
the potential problemsin testing and test automation oursel ves:

M Testing costs time and money (usually during the end phase of a development project,
when such time and money is least available)
W Manual execution of test cases is often a tedious and error-prone task (especially when
tests have to be repeated on successive versions of a system)
B Automated tests tend to be very sensitive to changes in the target systems interface
W [t can be difficult for outsiders to get a clear overview of what is being tested (especially
when using automation scripts that non-IT people find hard to understand)

During the years we have evolved an approach to counter these issues. Al-
though you shouldn’t regard it as a “silver bullet,” we think it can be very
practical; we would like to use this article to share it with you. The approach
is marketed under the name TestFrame™, but you can easily apply the tech-
nigues and principles outlined in this article yourself.

Test Clusters
Let us start with a look at what we have called the “test analysis process.”
The first step is to identify so-called test clusters—collections of tests that
have more or less the same scope and level of detail. Even for big projects
the number of test clusters should never be very large; typically there
should be no more than two dozen of them for each project.

39

November/December 1999

P QUICK LOOK

M |dentifying test clusters
B Using action words in test design

Software Testing & Quality Engineering www.stgemagazine.com




For abanking application, you might expect something
like the following list of clusters:

B Tests of the User Interface Are all screens, fields, and controls
accessible? Do they work as they are supposed to? Are the proper
help screens displayed? Does the tab bring the focus to the proper
next fields?

W Tests of the Entry Process Are the mandatory fields really
mandatory? Are the proper default values displayed? Do the right val-
ues appear in list boxes?

W Tests of Relationship Management Functionality Do the customer
names you've entered really appear in the database? Can they be
updated, removed, etc.?

W Tests of Payments and Transfers Are all possible forms of pay-
ments and other money transfers working properly? Is all data, like ac-
count balances, updated appropriately?

W Tests of Interest Calculations Are mathematical calculations pro-
cessing data as you had expected?

Thetablebdow isalig that might help you decide about the
dividon of thetegting task into dusters (don't seethisasthe

law; your prgject may require different priorities). The rows
are in descending order of importance.

You might begin cregting test clugters by separding
module tests, system tedts, functiona tests, and perfor-
mance tests. Then you might further divide dong lines—
such as the part of the sysem that is being tested, or the
department that hasto be involved in the test deve opment.

We dways try to meke a leest a provisond lig of test
clugters one of thefirg actionsin a project. If possble we
do this together with the users and other involved partiesin
ajoint sesson with awhiteboard. Liding intended test dudters
is a high priority because it's a very good beds for
planning and organizing the rest of the tegting project. For
eech duder, for example, we can decide on its priority and
who will do the work. We can dso track progress of deve-
opment and execution by cluster.

Test Design for a Cluster

In the TestFrame approach dl further tes development is
done at thelevd of theindividud test clugter. Test clusters

Dividing Testing Tasks
into Clusters

PRIORITY CRITERION

EXPLANATION

1 Logic

2 Independence

The division should be perceived as logical by the people

Execution of each test cluster should generally be
independent of the execution of other test clusters (i.e.,
output of one test cluster should not be used as input for
other clusters).When there are dependencies between test
clusters, these should be the result of a well-considered
decision.

3 Type of Test

The division should take into consideration the type of test
to be done, e.g., module tests, system tests, functional
tests, or performance tests (but less formal tests such as
user-friendliness tests can also be identified as a “test
cluster”).

4 Scope

The division should take into account the scope that has
been decided upon in the test strategy.In many cases this
is more or less the part of the system to which the tests in
the cluster will apply.

5 Intended
Method of
Execution

Separate clusters can be identified by the way the test is
probably going to be executed (e.g., manually, automated
with a record-and-playback test tool, automated with a C
program, or organized in a usability lab).

6 Project Issues

What functionality does the customer want to have tested
first? When is necessary design information going to be
available? In which order will parts of the system be
completed? These are questions to take into account as you
divide a test into clusters.

7 Cluster Size

To some extent, the size of the test clusters should be taken
into consideration as well.If a test cluster becomes very

large, consider splitting the clusters further.On the other |
hand, if clusters are very small, you might consider
combining them.

40|

test theszlineswill be

are usudly kept in goreeddhet files
which arefurther divided into individ-
ual sheets. In some of our proj-
ects we have connected the
Soreadshest environment to a
repository-type database
containing information such as
system requirements, test plans,
and test results. Why use
Spreadshedts? They are very rich in
functiondity, are wdl suited to ma
nipulate lines and columns, and dso
have the possihility to parform calou-
lations. For example, it is easy to
make copies of tests and vary them
using spreadsheet formulas.

InFigure 1, an example of atest
dude for an imaginary banking ap-
plicaionisshown. It indudesalig of
“test conditions” and one or more
sheets conddting of “test lines” Let's
fird look a the test conditions A test
condiion IS a condse ad reeddde
gatement on how a certain agpect of
the system should behave. In many
casssit isdirectly rdated to an under-
lying busnessrulein the system. At
the levd of these tes conditions, the
different steps that need to be taken
when testing the business rules are
not yet mentioned. It is more the
“whet” thet will be formulated then the
“how.” Thetest conditionsare agood
leve for a business expert to assess
whether the tests will be correct ad
complete.

Connected to the test
conditions we have the teds
themsdves. They conss of
shorter or longer sequences of test
lines (during the execution of the

| www.stgemagazine.com

Software Testing & Quality Engineering

November/December 1999



database. The firgt argument contains
the account number of the customer to

test sheet Example of & TestFrame Test Cluster be checked; the next two arguments
WEr=ion 10 contain the expected values.
author Warly Testwell A later line starting with transfer
describesamoney transfer. To execute
test condition  TCA Mew custormers can be enterad inta the system Iitwe rpght have_to activae a_“transfer
rgst ngme  first perpe gocount pr balance SU‘%‘I’ by selecﬂng a menu I'[GI’T_], ar
tering the data there, and pressing a
enter customer Green Jokin 4553473943 1500 “prooeS’ button. But it can dso mean
enter customer  Yiood Anne 422057596 2100 that we have to enter a record into &
batch file, wat until we have done dll
gocount ne  Jest name  first name other test lines specifying input, exe-
checkneme 458473948  Green John cute a batch job, download aresult file
check name 422087596 Forest A rine fincorrect line) and pen‘orm al the checksspeufled n
the same cluster.
- Findly, the baances of the two
test condition  TC2 Money can be transfarred batmesn two accounts custome's are checked. Their values
from o sum should be the initid balances plus or
tranztfer 458473048 422087596 500 minusthe sum that wastransferred.
gocount he | balance ReSUItS
check balance 438473945 1000
chack halance 422087595 | 2600 whet the reauits are. We dways try to
produce reports autometicaly and give
test condition T2 Every client has fo have a unigue accaunt nunnber them . Gﬂ.ly accessble . |E§/OU'[S
fast name  fest parpe account py Balance :‘T'ﬂddﬁ&%therhge\/d Of. CHI%I ItO the
erter custamer  Savy Danicue 456152101 88005 e byt teter In the cluster

(a sample report format is shown

in Hgure 2). Reports begin with
generd information about the ted,

FIGURE 1 An example of a Test Cluster

interpreted one by one). Evary line darts with afidd called
the “action word,” which specifieswha hasto be done.

Action words are usad for entering one or more vaues,
generding an event, or checking an outcome. The action
word is followed by anumber of arguments pecifying data
needed by the action, such asinput that hasto be entered or
“expected vaues' tha are to be compared to the red out-
comes.

The two most important advantages of working with
action words are probably readability and maintainabili-
ty. Tests are easy to read because al details needed for
their execution (like which buttons have to be pushed or &
what location on the screen an outcome can be found) are
hidden behind the action words. The tedters don't have to
bother with them. When those execution details change,
even if these changes are subdantid, it will mogt likdy not
influence the test cluster.

Our example garts with a couple of commentary lines
the name of the cluger, the verson, and the author. Next,
we record which test condition well be tesing. Then, we
can dart entering customers, using the action word enter
customer. Note that such action words are specific for an ap-
plication (when doing test jobsfor military ships, for exam-
ple, we have seen much more often action words such as
“fire torpedo”). You can dearly see that the same action
word is used two times, with different arguments.

In the lines that state check name, the names are
checked againg the lis of namesdready exiginginthe

Of course if you are executing a test you want to know

fol-
lowed by the test lines. When there are
differences between the expected and
the actud reaults they are shown as “falures” (In the ex-
ample shown here, it's clear that the tester confused the
lagt name “Wood’ with “Forest,” resulting in afailure) At
the end of the report, a summary is produced, showing gen-
erd datigdics such as the number of passed and faled
checks—aswdl asthelinesin which thefails occurred.

This report format is just an example You can essly
convert it to meet the needs of your particular Stuation, or
to digplay the report in ancther technical form—such as an
HTML document, or entries into a bugrtracking system.
What isimportant is that the report displays the results at
the same levd of ddal as in the test dude, avaiding the
digraction of unwanted details (eg., which button was
pushed or whet thetitle of adisplayed window wes). There-
port mug be dear and condse, giving the tester and deved-
oper the levd of information needed to assess the reaults
and to track any problems. To that purpose, we do some-
times print some additiond information when thereis afal,
such as dumps of the windows as they appeared at the time
of the problem.

To make the tests more reedable we organize them into
groups within asheet. Thetedt lines can be grouped in sev-
erd ways, depending on the kind of test. For functiona
tests, we mogt often use smdl test cases that have only a
few actions and checks, or we use longer test scenarios that
dmulate complex business processes Some test scenarios
we cal “sogp operas” They destribe sequences of evernts
taken from everyday busnesslife—but exaggeraiedinthe

41

November/December 1999

Software Testing & Quality Engineering

. I
www.stgemagazine.com




42

cluster name Example of a TestFrame Test Cluster
cluster version 1.1

cluster author Marly Testwell

application version 2.5a

run date and time January 1,2000 13:52:19

tests, depending on the Stuaion. One
extenson to our gpproach that we ve
found particularly interesting is that
proposed by Edward Kit cdled test de-
dgn templates These templaes are a

paticularly good technique to hdp get
you fromtest conditionsto test lines.

Test Condition TC1 New customers can be entered in the system

2(7): entercustomerGreen John 458473948
3(8): enter customerWood Anne 422087596
4(11): checkname 458473948 Green John
pass Green John
5(12): checkname 422087596 Forest Anne
FAIL Wood Anne

Test Condition TC2 Money can be transferred between two accounts

7(16):  transfer 458473948 422087596 500
8(19): check balance 458473948 1000
pass 1000
9(20):  check balance 422087596 2600
pass 2600

Test Condition TC3 Every client has to have a unique account number

Navigation Engineering

It is common practice to automete the
execution of the test made with Ted-
Frame tes cduders by trandating the
lines into Sep-by-gep indructions for a
te tod. When for some regson it is de-
drable to execute the tests by hand, the
oreadshest can be usad to generate in-
structions for the user in much the
same way.

We use the teem “navigetion” to de-
scribe the automation of the test execu-
tion becauseit indicatesthe job of finding
away through the winding paths of an
gpplication’s interface. The navigation
is a separate adtivity focused on the
execution of thetests. We usudly refer to
the people responsible for the navigeation
as the “navigetion engners” In this sc-
tion we will explain something about thet
navigation process. (This part of the arti-

1500
2100

11(24):  entercustomerSavy Danique 456182101 89005 deisahit moretechnicd then therest,

but non-technicd people can sip it
ithout losng too much of the basc

enq of cluster Example of a TestFrame Test Cluster Y(\jness in our gpproadflL; For automated

fimshed at January 1,2000 13:52:31 exenLtion, a “navigetion scheame? is con-

time used 12 seconds structed. This scheme consists of severl

number of cluster lines : 431 components, the most important of

number of checks 75 which are:

number passed 72

number failed 3 A Actions created by the navigation

percentage passed 96% engineer, including

failed at report line(s):
5,36,402

FIGURE 2 An example of a TestFrame report

way mogt televison soap operas or novellas are. That
makes them a good test for the system. Sogp opera tests
are uaudly made by (or in conjunction with) end-usars or
business specidlists.

Test Design Templates

Although this artide's focus is not tes pedfication tech-
niques (eg., dedson tables limit andyds, ec.), mog of
these techniques do play a rde in the TestFrame goproach.
Decidon tables, for example, can be used to formulae test
conditions, and limit andys's can be used to make tes lines.
In our projects we use many techniques to produce our

[ | low-level actions

[ | intermediate-level actions

] high-level actions

B The “engine”

The lowHevd attions implement single
actions on individua eements of the sysems user interface
(for example, pushing a button on a window). The interme-
diate-level actions, athough gtill aimed & the interface of
the target system, are more complex actions (e.g., enter dl
datain a window and push the OK button or enter a trans-
action in an ERP sygem). The high-levd actions are com-
plex and amed at the test, not necessxily the target sys-
tems interface. One high-level action can use more than
one window and/or use only part of the fidds available per
window.

The actions mentioned above, like enter customer, are
examples of high-levedl actions. In a typicd navigation
scheme, these high-leve actions are the starting point.

www.stgemagazine.com

Software Testing & Quality Engineering

November/December 1999



They will cdl the intermediate-leve actions, whichinturn
use the low-level actions.

The easest way to implement action words is to use
the sript language of ategting tod. The threeleve naviga-
tion scheme can be implemented by meking a function for
every action. The functions for the high-levd actions cdl
those for the intermediate levd, which in turn cdl the func-
tions for the low-level actions.

Our example could look something like Example 1, us-
ing an imaginary test tool script language.

Functions like PushButton, EnterField, and SelectCheck-
Box are low-levd functions In mog cases, thar implemen-
tation is graightforward using functionsin the testing tool.
We dso use our goproach for testing software without a
user interface, such as embedded software. In such cases,
the lowest-leve functions do things like cdling api func-
tions or sending network usudly directly in a
programming language like C. For the sructure of the nav-
igation scheme, this makes very little difference.

The function EnterPersonalData is a medium-evd func-
tion, designed to operate on one window, following more or
less the layout of that window. It is meant to be used by
high-eve functions like EnterCustomer in this example. The
high-level function, directly connected to an action word in
a Joreadshedt, takes the arguments from the clugter line
(“arg(2)” is the B column), adds extra default vaues (eg.,
“femde’ for the gender), and inputsthemin one or more of
the windows in the target system.

The lad line, RegisterAction, puts our highHeve action
(EnterCustomer) into a table, which we cdl the “action lig.”
Thistableis usad by agtandard module that we have cdled
the“engine” It readsthe lines from the duster one by one
and executes the proper function for every line—based on
the regigered action word. It dso puts the arguments from
the dudter line into ancther table cdled the “argument ar-
ray,” making them available to the script executing the ac-
tion word.

When we want to execute a test, we normaly export
the duder firg from its soreadsheet
format to a tab-separated text file (a
sandard export option in most goread-
sheet programs). The engine reads the
lines from that text file and interprets
them. It also does other generd tasks,
such as producing reports. Over the
years our engine has become quite an
extensve standard product—doing
complicaied tasks such as running tedts
smultaneoudy—huit it is not too diffi-
cult to cregte one yoursdf with enough
functiondity to process most of your
tests.

We think it is important to mention
two extensions to the navigation
scheme here, namdy “table-driven nav-
igation” and “template-based naviga
tion.”

By table-driven navigation we
mean the use of tables containing infor-

given window). Using such tablesit is possble to imple-
ment intermediate-leve actions very efficiently. For exam-
ple, one function can be named EnterScreenData, designed to
input dl fidds of awindow. Thewindow itsdf isaparameter
for that function. The function EnterCustomer referred to in
Example 1 could now read something like Example 2
(next page).

(Inthis example, arguments 4, 2, and 3 from the dluster
ae en;ered, folowed by the vdue “femde’ as a fourth
entry.

In template-based navigation, we specify the high-lev-
e action not in the scripting language, but in just another
clugter (goreadshest)}—as we would the actions in a test.
To do that, we have introduced a gandard action word De-
fineTemplate, which defines a new action word with parame-
ters. Once defined, the new action word can be used like any
other action word. The lines following the DefineTemplate line
contain the actions that have to be executed if the new action
isused inaduger. Our high-levd action word implemented
with templ ate-based navigation could look like Example 3.

This defines the action word EnterCustomer with the pa-
rameters firstname and lastname. The “&” indicates the para-
meters. The new action word can beusad later oninadus
ter like Example 4.

Hrd the lines defined with EnterCustomer are executed
with “Olivid’ as firstname and “James’ as lastname; they are
then executed again with the vaues* Eduardo” and “ Lopez.”

Using TestFrame

in Practice

We have destribed an gpproach for aregting a maintaineble
and dructured test set and automating its execution in a
reusable way. In this approach the design of the tess is
grictly separated from the automation of thetest. Thisar-
ticle has given afirst introduction to the approach; for
more information you are welcome on our web Ste about
TestFrame (www.testframe.com).

Il function for a high level action

Function EnterCustomer
PushButton ‘Relations’
EnterPersonalData arg(4), arg(2), arg(3), ‘female’
EnterFinancialData arg(4), arg(5)

Il function for an intermediate level action

Function EnterPersonalData ( number, firstname, lastname, gender)
EnterField ‘Account Number’, number
EnterField ‘First Name’, firstname
EnterField ‘Last Name’, lastname
SelectCheckBox ‘Male/Female’, gender

Il register the high level action and connect it to a function
RegisterAction ‘enter customer’, EnterCustomer

mation sbout detals of the target
sydems interface (eg., dl the screen «gnter customer”
objectsfor a

EXAMPLE 1 Using a test tool script language to implement the action word

November/December 1999

Software Testing & Quality Engineering

www.stqemagazine.com




44

I high level function
Function EnterCustomer
PushButton ‘relations’
EnterScreenData ‘personal’, arg(4), arg(2), arg(3), ‘female’ ...

EXAMPLE 2 Table-driven navigation for “EnterCustomer”

DefineTemplate [EnterCustomer | &firstname &lastname

PushButton relations | _ _
EnterData personal &firstname &lastname  [female
PushButton financial

EndTemplate

EXAMPLE 3 Template-based naviaation for “EnterCustomer”

EnterCustomer Olivia James

EnterCustomer Eduardo Lopez

EXAMPLE 4 The defined action word can be used in other clusters

In mogt cases the gpproach, with test dugters, test lines,
and navigdtion, isfarly sraightforward to gart with. Having
a Jreadshedt and a tet execution tod is usudly enough.
However, bath teding and test automation are difficult aress
in IT, with or without our gpproach. There isawide chaice of
pitfalsto sumbleinto and lessonsto belearned. Stick to the
principle of keeping tests separated from their execution,
and pay dtention to the way tedts are divided into duders
Also kegpin mind, aswe mentioned in the introduction, thet
our goproach isnat amagic wand. Teding isacomplex and
highly criticd activity that should never be underestimated,
with or without the gpproach outlined here Take care that
everybody involved in a tesing project understands this.
Having tests automated does not mean that a*“ push of buit-
tor” will solve dl testing Careful planning and atentive man-

of the tedting activities stay asimportant as with
any method. SrQe

References:

Hans Buwadda “Teging with Action Words” Presanta
tion for STAR 98West Conference, San Diego, Cdlifornia,
October 1998.

HansBuwdda “ Teging with Action Words: Abandoning
Record and Payback” Presentation for Eurodar 1996
Conference, Amsterdam, December 1996.

Edward Kit. “Integrated, Effective Test Desgn and Au-
tomation,” Software Development Magazine February
1999.

Maartje Kasdorp is a consultant for TESTars, a
leading International Testing services group based in
the US and India. Mr. Buwalda was the original
founder of TestFrame. Ms. Kasdorp has been
respongble for much of the test devel opment lifecycle in
the TestFrame approach. You can reach Maatje
Kagdorp at:

maartje@testars.net .

www.stgemagazine.com

Software Testing & Quality Engineering

November/December 1999



