
Gett

A practical
approach
to test
developmen
and automa
by Hans Buwa

and Maartje Kas
Tools Ft Automation

ing

Under
Control

t
tion
lda

dorp

esting of systems is probably the most difficult task there is in IT—
especially if you want to execute the tests automatically. We make our
living running test projects for customers, and have experienced many of
the potential problems in testing and test automation ourselves:

Testing costs time and money (usually during the end phase of a development project,
when such time and money is least available)

 Manual execution of test cases is often a tedious and error-prone task (especially when
tests have to be repeated on successive versions of a system)

 Automated tests tend to be very sensitive to changes in the target systems interface
 It can be difficult for outsiders to get a clear overview of what is being tested (especially

when using automation scripts that non-IT people find hard to understand)

During the years we have evolved an approach to counter these issues. Al-
though you shouldn’t regard it as a “silver bullet,” we think it can be very
practical; we would like to use this article to share it with you. The approach
is marketed under the name TestFrameTM, but you can easily apply the tech-
niques and principles outlined in this article yourself.

Test Clusters
Let us start with a look at what we have called the “test analysis process.”
The first step is to identify so-called test clusters—collections of tests that
have more or less the same scope and level of detail. Even for big projects
the number of test clusters should never be very large; typically there
should be no more than two dozen of them for each project.

39
November/December 1999 Software Testing & Quality Engineering www.stqemagazine.com

T

Q U I C K L O O K

 Identifying test clusters

Using action words in test design

For a banking application, you might expect something
like the following list of clusters:

 Tests of the User Interface Are all screens, fields, and controls
accessible? Do they work as they are supposed to? Are the proper
help screens displayed? Does the tab bring the focus to the proper
next fields?

 Tests of the Entry Process Are the mandatory fields really
mandatory? Are the proper default values displayed? Do the right val-
ues appear in list boxes?

 Tests of Relationship Management Functionality Do the customer
names you’ve entered really appear in the database? Can they be
updated, removed, etc.?

 Tests of Payments and Transfers Are all possible forms of pay-
ments and other money transfers working properly? Is all data, like ac-
count balances, updated appropriately?

 Tests of Interest Calculations Are mathematical calculations pro-
cessing data as you had expected?

The table below is a list that might help you decide about the
division of the testing task into clusters (don’t see this as the

40

law; your project may require different priorities). The rows
are in descending order of importance.

You might begin creating test clusters by separating
module tests, system tests, functional tests, and perfor-
mance tests. Then you might further divide along lines—
such as the part of the system that is being tested, or the
department that has to be involved in the test development.

We always try to make at least a provisional list of test
clusters one of the first actions in a project. If possible we
do this together with the users and other involved parties in
a joint session with a whiteboard. Listing intended test clusters
is a high priority because it’s a very good basis for
planning and organizing the rest of the testing project. For
each cluster, for example, we can decide on its priority and
who will do the work. We can also track progress of devel-
opment and execution by cluster.

Test Design for a Cluster
In the TestFrame approach all further test development is
done at the level of the individual test cluster. Test clusters

are usually kept in spreadsheet files,
which are further divided into individ-
ual sheets. In some of our proj-
ects we have connected the
spreadsheet environment to a
repository-type database
containing information such as
system requirements, test plans,
and test results. Why use
spreadsheets? They are very rich in
functionality, are well suited to ma-
nipulate lines and columns, and also
have the possibility to perform calcu-
lations. For example, it is easy to
make copies of tests and vary them
using spreadsheet formulas.

In Figure 1, an example of a test
cluster for an imaginary banking ap-
plication is shown. It includes a list of
“test conditions” and one or more
sheets consisting of “test lines.” Let’s
first look at the test conditions. A test
condition is a concise and readable
statement on how a certain aspect of
the system should behave. In many
cases it is directly related to an under-
lying business rule in the system. At
the level of these test conditions, the
different steps that need to be taken
when testing the business rules are
not yet mentioned. It is more the
“what” that will be formulated than the
“how.” The test conditions are a good
level for a business expert to assess
whether the tests will be correct and
complete.

Connected to the test
conditions we have the tests
themselves. They consist of
shorter or longer sequences of test
lines (during the execution of the

test these lines will be
www.stqemagazine.com Software Testing & Quality Engineering November/December 1999

Dividing Test ing Tasks
into Clusters

PRIORITY CRITERION EXPLANATION

1 Logic The division should be perceived as logical by the people
involved in making, reviewing, and/or maintaining the tests.

2 Independence Execution of each test cluster should generally be
independent of the execution of other test clusters (i.e.,
output of one test cluster should not be used as input for
other clusters).When there are dependencies between test
clusters, these should be the result of a well-considered
decision.

3 Type of Test The division should take into consideration the type of test
to be done, e.g., module tests, system tests, functional
tests, or performance tests (but less formal tests such as
user-friendliness tests can also be identified as a “test
cluster”).

4 Scope The division should take into account the scope that has
been decided upon in the test strategy.In many cases this
is more or less the part of the system to which the tests in
the cluster will apply.

5 Intended Separate clusters can be identified by the way the test is

Method of probably going to be executed (e.g., manually, automated
Execution with a record-and-playback test tool, automated with a C

program, or organized in a usability lab).

6 Project Issues What functionality does the customer want to have tested
first? When is necessary design information going to be
available? In which order will parts of the system be
completed? These are questions to take into account as you
divide a test into clusters.

7 Cluster Size To some extent, the size of the test clusters should be taken
into consideration as well.If a test cluster becomes very
large, consider splitting the clusters further.On the other
hand, if clusters are very small, you might consider
combining them.

FIGURE 1 An example of a Test Cluster

interpreted one by one). Every line starts with a field called
the “action word,” which specifies what has to be done.

Action words are used for entering one or more values,
generating an event, or checking an outcome. The action
word is followed by a number of arguments specifying data
needed by the action, such as input that has to be entered or
“expected values” that are to be compared to the real out-
comes.

The two most important advantages of working with
action words are probably readability and maintainabili-
ty. Tests are easy to read because all details needed for
their execution (like which buttons have to be pushed or at
what location on the screen an outcome can be found) are
hidden behind the action words. The testers don’t have to
bother with them. When those execution details change,
even if these changes are substantial, it will most likely not
influence the test cluster.

Our example starts with a couple of commentary lines:
the name of the cluster, the version, and the author. Next,
we record which test condition we’ll be testing. Then, we
can start entering customers, using the action word enter
customer. Note that such action words are specific for an ap-
plication (when doing test jobs for military ships, for exam-
ple, we have seen much more often action words such as
“fire torpedo”). You can clearly see that the same action
word is used two times, with different arguments.

In the lines that state check name, the names are
checked against the list of names already existing in the

Of course if you are executing a test you want to know

what the results are. We always try to
produce reports automatically and give
them easily accessible layouts,
matching their level of detail to the
level used by the tester in the cluster
(a sample report format is shown
in Figure 2). Reports begin with
general information about the test,
fol-

lowed by the test lines. When there are
differences between the expected and

the actual results, they are shown as “failures.” (In the ex-
ample shown here, it’s clear that the tester confused the
last name “Wood” with “Forest,” resulting in a failure.) At
the end of the report, a summary is produced, showing gen-
eral statistics such as the number of passed and failed
checks—as well as the lines in which the fails occurred.

This report format is just an example. You can easily
convert it to meet the needs of your particular situation, or
to display the report in another technical form—such as an
HTML document, or entries into a bug-tracking system.
What is important is that the report displays the results at
the same level of detail as in the test cluster, avoiding the
distraction of unwanted details (e.g., which button was
pushed or what the title of a displayed window was). The re-
port must be clear and concise, giving the tester and devel-
oper the level of information needed to assess the results
and to track any problems. To that purpose, we do some-
times print some additional information when there is a fail,
such as dumps of the windows as they appeared at the time
of the problem.

To make the tests more readable we organize them into
groups within a sheet. The test lines can be grouped in sev-
eral ways, depending on the kind of test. For functional
tests, we most often use small test cases that have only a
few actions and checks, or we use longer test scenarios that
simulate complex business processes. Some test scenarios
we call “soap operas.” They describe sequences of events
taken from everyday business life—but exaggerated in the

41
November/December 1999 Software Testing & Quality Engineering www.stqemagazine.com

database. The first argument contains
the account number of the customer to
be checked; the next two arguments
contain the expected values.

A later line starting with transfer
describes a money transfer. To execute
it we might have to activate a “transfer
screen” by selecting a menu item, en-
tering the data there, and pressing a
“process” button. But it can also mean
that we have to enter a record into a
batch file, wait until we have done all
other test lines specifying input, exe-
cute a batch job, download a result file,
and perform all the checks specified in
the same cluster.

Finally, the balances of the two
customers are checked. Their values
should be the initial balances plus or
minus the sum that was transferred.

Results

tests, depending on the situation. One
extension to our approach that we’ve
found particularly interesting is that
proposed by Edward Kit called test de-
sign templates. These templates are a
particularly good technique to help get
you from test conditions to test lines.

Navigation Engineering
It is common practice to automate the
execution of the test made with Test-
Frame test clusters by translating the
lines into step-by-step instructions for a
test tool. When for some reason it is de-
sirable to execute the tests by hand, the
spreadsheet can be used to generate in-
structions for the user in much the
same way.

We use the term “navigation” to de-
scribe the automation of the test execu-
tion because it indicates the job of finding
a way through the winding paths of an
application’s interface. The navigation
is a separate activity focused on the
execution of the tests. We usually refer to
the people responsible for the navigation
as the “navigation engineers.” In this sec-
tion we will explain something about that
navigation process. (This part of the arti-
cle is a bit more technical then the rest,
but non-technical people can skip it
without losing too much of the basic
ideas in our approach.) For automated
execution, a “navigation scheme” is con-
structed. This scheme consists of several
components, the most important of
which are:

A Actions created by the navigation
engineer, including
 low-level actions
 intermediate-level actions
 high-level actions

B The “engine”

The low-level actions implement single
actions on individual elements of the systems user interface
(for example, pushing a button on a window). The interme-
diate-level actions, although still aimed at the interface of
the target system, are more complex actions (e.g., enter all
data in a window and push the OK button or enter a trans-
action in an ERP system). The high-level actions are com-
plex and aimed at the test, not necessarily the target sys-
tems interface. One high-level action can use more than
one window and/or use only part of the fields available per
window.

The actions mentioned above, like enter customer, are
examples of high-level actions. In a typical navigation
scheme, these high-level actions are the starting point.

www.stqemagazine.com Software Testing & Quality Engineering November/December 1999

cluster name : Example of a TestFrame Test Cluster
cluster version : 1.1
cluster author : Marly Testwell

application version : 2.5a

run date and time : January 1,2000 13:52:19

Test Condition TC1 New customers can be entered in the system

2 (7): entercustomerGreen John 458473948 1500

3 (8): entercustomerWood Anne 422087596 2100

4 (11): check name 458473948 Green John
pass Green John

5 (12): check name 422087596 Forest Anne
FAIL Wood Anne

Test Condition TC2 Money can be transferred between two accounts

7 (16): transfer 458473948 422087596 500

8 (19): check balance 458473948 1000
pass 1000

9 (20): check balance 422087596 2600
pass 2600

Test Condition TC3 Every client has to have a unique account number

11 (24): entercustomerSavy Danique 456182101 89005

end of cluster : Example of a TestFrame Test Cluster
finished at : January 1,2000 13:52:31
time used : 12 seconds

number of cluster lines : 431
number of checks : 75
number passed : 72
number failed : 3
percentage passed : 96%

failed at report line(s):
5,36,402

FIGURE 2 An example of a TestFrame report

way most television soap operas or novellas are. That
makes them a good test for the system. Soap opera tests
are usually made by (or in conjunction with) end-users or
business specialists.

Test Design Templates
Although this article’s focus is not test specification tech-
niques (e.g., decision tables, limit analysis, etc.), most of
these techniques do play a role in the TestFrame approach.
Decision tables, for example, can be used to formulate test
conditions, and limit analysis can be used to make test lines.
In our projects we use many techniques to produce our

42

They will call the intermediate-level actions, which in turn
use the low-level actions.

The easiest way to implement action words is to use
the script language of a testing tool. The three-level naviga-
tion scheme can be implemented by making a function for
every action. The functions for the high-level actions call
those for the intermediate level, which in turn call the func-
tions for the low-level actions.

Our example could look something like Example 1, us-
ing an imaginary test tool script language.

Functions like PushButton, EnterField, and SelectCheck-
Box are low-level functions. In most cases, their implemen-
tation is straightforward using functions in the testing tool.
We also use our approach for testing software without a
user interface, such as embedded software. In such cases,
the lowest-level functions do things like calling api func-
tions or sending network messages, usually directly in a
programming language like C. For the structure of the nav-
igation scheme, this makes very little difference.

The function EnterPersonalData is a medium-level func-
tion, designed to operate on one window, following more or
less the layout of that window. It is meant to be used by
high-level functions like EnterCustomer in this example. The
high-level function, directly connected to an action word in
a spreadsheet, takes the arguments from the cluster line
(“arg(2)” is the B column), adds extra default values (e.g.,
“female” for the gender), and inputs them in one or more of
the windows in the target system.

The last line, RegisterAction, puts our high-level action
(EnterCustomer) into a table, which we call the “action list.”
This table is used by a standard module that we have called
the “engine.” It reads the lines from the cluster one by one
and executes the proper function for every line—based on
the registered action word. It also puts the arguments from
the cluster line into another table called the “argument ar-
ray,” making them available to the script executing the ac-
tion word.

When we want to execute a test, we normally export
the cluster first from its spreadsheet
format to a tab-separated text file (a
standard export option in most spread-
sheet programs). The engine reads the
lines from that text file and interprets
them. It also does other general tasks,
such as producing reports. Over the
years our engine has become quite an
extensive standard product—doing
complicated tasks such as running tests
simultaneously—but it is not too diffi-
cult to create one yourself with enough
functionality to process most of your
tests.

We think it is important to mention
two extensions to the navigation
scheme here, namely “table-driven nav-
igation” and “template-based naviga-
tion.”

By table-driven navigation we
mean the use of tables containing infor-
mation about details of the target
systems interface (e.g., all the screen
objects for a

given window). Using such tables it is possible to imple-
ment intermediate-level actions very efficiently. For exam-
ple, one function can be named EnterScreenData, designed to
input all fields of a window. The window itself is a parameter
for that function. The function EnterCustomer referred to in
Example 1 could now read something like Example 2
(next page).

(In this example, arguments 4, 2, and 3 from the cluster
are entered, followed by the value “female” as a fourth
entry.)

In template-based navigation, we specify the high-lev-
el action not in the scripting language, but in just another
cluster (spreadsheet)—as we would the actions in a test.
To do that, we have introduced a standard action word De-
fineTemplate, which defines a new action word with parame-
ters. Once defined, the new action word can be used like any
other action word. The lines following the DefineTemplate line
contain the actions that have to be executed if the new action
is used in a cluster. Our high-level action word implemented
with template-based navigation could look like Example 3.

This defines the action word EnterCustomer with the pa-
rameters firstname and lastname. The “&” indicates the para-
meters. The new action word can be used later on in a clus-
ter like Example 4.

First the lines defined with EnterCustomer are executed
with “Olivia” as firstname and “James” as lastname; they are
then executed again with the values “Eduardo”and “Lopez.”

Using TestFrame
in Practice
We have described an approach for creating a maintainable
and structured test set and automating its execution in a
reusable way. In this approach the design of the tests is
strictly separated from the automation of the test. This ar-
ticle has given a first introduction to the approach; for
more information you are welcome on our web site about
TestFrame (www.testframe.com).

43

November/December 1999 Software Testing & Quality Engineering www.stqemagazine.com

// function for a high level action
Function EnterCustomer

PushButton ‘Relations’
EnterPersonalData arg(4), arg(2), arg(3), ‘female’
EnterFinancialData arg(4), arg(5)
...

// function for an intermediate level action
Function EnterPersonalData (number, firstname, lastname, gender)

E n t e r F i e l d ‘ A c c o u n t N u m b e r ’ , n u m b e r
E n t e r F i e l d ‘ F i r s t N a m e ’ , f i r s t n a m e
E n t e r F i e l d ‘ L a s t N a m e ’ , l a s t n a m e
S e l e c t C h e c k B o x ‘ M a l e / F e m a l e ’ , g e n d e r
...

// register the high level action and connect it to a function
RegisterAction ‘enter customer’, EnterCustomer

EXAMPLE 1 Using a test tool script language to implement the action word
“enter customer”

EXAMPLE 4 The defined action word can be used in other clusters

In most cases the approach, with test clusters, test lines,
and navigation, is fairly straightforward to start with. Having
a spreadsheet and a test execution tool is usually enough.
However, both testing and test automation are difficult areas
in IT, with or without our approach. There is a wide choice of
pitfalls to stumble into and lessons to be learned. Stick to the
principle of keeping tests separated from their execution,
and pay attention to the way tests are divided into clusters.
Also keep in mind, as we mentioned in the introduction, that
our approach is not a magic wand. Testing is a complex and
highly critical activity that should never be underestimated,
with or without the approach outlined here. Take care that
everybody involved in a testing project understands this.
Having tests automated does not mean that a “push of but-
ton” will solve all testing. Careful planning and attentive man-
agement of the testing activities stay as important as with
any method. STQE

References:
Hans Buwalda. “Testing with Action Words.” Presenta-

tion for STAR’98West Conference, San Diego, California,
October 1998.

Hans Buwalda. “Testingwith Action Words: Abandoning
Record and Playback.” Presentation for Eurostar 1996
Conference, Amsterdam, December 1996.

Edward Kit. “Integrated, Effective Test Design and Au-
tomation,” Software Development Magazine February
1999.

Maartje Kasdorp is a consultant for TESTars, a
leading International Testing services group based in
the US, and India. Mr. Buwalda was the original
founder of TestFrame. Ms. Kasdorp has been
responsible for much of the test development lifecycle in
the TestFrame approach. You can reach Maartje
Kasdorp at:

maartje@testars.net .

44
www.stqemagazine.com Software Testing & Quality Engineering November/December 1999

EXAMPLE 2 Table-driven navigation for “EnterCustomer”

DefineTemplate EnterCustomer &firstname &lastname ...
PushButton relations
EnterData personal &firstname &lastname female
PushButton financial
. . .
EndTemplate

EXAMPLE 3 Template-based navigation for “EnterCustomer”

// high level function
Function EnterCustomer

PushButton ‘relations’
EnterScreenData ‘personal’, arg(4), arg(2), arg(3), ‘female’ ...

...

...

EnterCustomer Olivia James
EnterCustomer Eduardo Lopez

